Last updated: 2022-07-15

Checks: 7 0

Knit directory: logistic-susie-gsea/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220105) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version adb077c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    _targets.R
    Ignored:    _targets.html
    Ignored:    _targets.md
    Ignored:    _targets/objects/
    Ignored:    _targets/user/
    Ignored:    _targets/workspaces/
    Ignored:    _targets_r/
    Ignored:    cache/
    Ignored:    data/.DS_Store
    Ignored:    data/adipose_2yr_topsnp.txt
    Ignored:    data/anthony/
    Ignored:    data/de-droplet/
    Ignored:    data/deng/
    Ignored:    data/fetal_reference_cellid_gene_sets.RData
    Ignored:    data/human_chimp_eb/
    Ignored:    data/pbmc-purified/
    Ignored:    data/wenhe_baboon_diet/
    Ignored:    data/yusha_sc_tumor/
    Ignored:    library/
    Ignored:    renv/
    Ignored:    staging/

Untracked files:
    Untracked:  .ipynb_checkpoints/
    Untracked:  Master's Paper.pdf
    Untracked:  Project_1652928411/
    Untracked:  Project_1653228324/
    Untracked:  Project_1653228355/
    Untracked:  VEB_Boost_Proposal_Write_Up (1).pdf
    Untracked:  _targets/meta/
    Untracked:  additive.l5.gonr.aggregate.scores
    Untracked:  analysis/alpha_ash_v_point_normal.Rmd
    Untracked:  analysis/compare_w_post_hoc_clustering.Rmd
    Untracked:  analysis/de_droplet_noshrink.Rmd
    Untracked:  analysis/de_droplet_noshrink_logistic_susie.Rmd
    Untracked:  analysis/fetal_reference_cellid_gsea.Rmd
    Untracked:  analysis/fixed_intercept.Rmd
    Untracked:  analysis/gsea_made_simple.Rmd
    Untracked:  analysis/iDEA_examples.Rmd
    Untracked:  analysis/latent_gene_list.Rmd
    Untracked:  analysis/linear_method_failure_modes.Rmd
    Untracked:  analysis/linear_regression_failure_regime.Rmd
    Untracked:  analysis/linear_v_logistic_pbmc.Rmd
    Untracked:  analysis/logistic_susie_veb_boost_vs_vb.Rmd
    Untracked:  analysis/logistic_susie_vis.Rmd
    Untracked:  analysis/logistic_variational_bound.Rmd
    Untracked:  analysis/logsitic_susie_template.Rmd
    Untracked:  analysis/pcb_scratch.Rmd
    Untracked:  analysis/references.bib
    Untracked:  analysis/roadmap.Rmd
    Untracked:  analysis/simulations.Rmd
    Untracked:  analysis/simulations_l1.Rmd
    Untracked:  analysis/tccm_vs_logistic_susie.Rmd
    Untracked:  analysis/template.Rmd
    Untracked:  analysis/test.Rmd
    Untracked:  build_site.R
    Untracked:  code/html_tables.R
    Untracked:  code/latent_logistic_susie.R
    Untracked:  code/logistic_susie_data_driver.R
    Untracked:  code/marginal_sumstat_gsea_collapsed.R
    Untracked:  code/point_normal.R
    Untracked:  code/sumstat_gsea.py
    Untracked:  code/susie_gsea_queries.R
    Untracked:  docs.zip
    Untracked:  export/
    Untracked:  l1.sim.aggregate.scores
    Untracked:  pbmc_cd19_symbol.txt
    Untracked:  pbmc_cd19b_0.1_background.csv
    Untracked:  pbmc_cd19b_0.1_david_annotation_clusters.txt
    Untracked:  pbmc_cd19b_0.1_david_results.txt
    Untracked:  pbmc_cd19b_0.1_list.csv
    Untracked:  presentations/
    Untracked:  references.bib

Unstaged changes:
    Modified:   analysis/example_pbmc.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/example_anthony.Rmd) and HTML (docs/example_anthony.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd adb077c karltayeb 2022-07-15 wflow_publish(files = c("analysis/example_anthony.Rmd", "analysis/example_yusha_sc_tumor.Rmd"))
html ef048c4 karltayeb 2022-07-14 Build site.
Rmd 2dd378e karltayeb 2022-07-14 wflow_publish("analysis/example_anthony.Rmd")

Introduction

Anthony differentiated IPSCS -> MSC -> Chondrocytes and treated with physical stress and IL1B.

Load data

source('code/load_data.R')
library(gseasusie)

# save output to a folder... helps for running many factors
cache_rds = purrr::partial(xfun::cache_rds, dir='cache/chondrocyte_oa/')

driver = function(gs, experiment){
  dat <- gseasusie::prep_binary_data(gs, data[[experiment]], thresh = 0.05)
  ora <- gseasusie::fit_ora(dat$X, dat$y)
  # add description
  ora <- ora %>%
    dplyr::left_join(gs$geneSetDes)
  fit <- gseasusie::fit_logistic_susie_veb_boost(dat$X, dat$y)
  return(list(fit=fit, ora=ora))
}

driver_cached = function(prefix, gs, experiment, ...){
  file = paste0(prefix, '_', gs$db, '_', experiment, '.rds')
  print(file)
  cache_rds(driver(gs, experiment), file=file, ...)
}
data  <- load_chondrocyte_data2()
go <- gseasusie::load_all_go()
res <- purrr::map(names(data), ~driver_cached('hnscc', go, .x, rerun=F))
#> [1] "hnscc_all_go_CTS.rds"
#> [1] "hnscc_all_go_IL1B.rds"
names(res) <- names(data)
pack_group = function(tbl){
    components <- tbl$component
    unique.components <- unique(components)
    start <- match(unique.components, components)
    end <- c(tail(start, -1) - 1, length(components))
    res <- tbl %>% dplyr::select(-c(component)) %>% kableExtra::kbl()
    for(i in 1:length(unique.components)){
      res <- kableExtra::pack_rows(res, unique.components[i], start[i], end[i])
    }
    return(res)
}

#' Report credible set based summary of SuSiE
#' @export
static_table = function(fit, ora){
  # get credible sets
  res <- gseasusie:::get_gene_set_summary(fit) %>%
    dplyr::left_join(ora)
  csdat <- gseasusie:::get_credible_set_summary(fit) %>%
    dplyr::left_join(ora) %>%
    dplyr::filter(in_cs, active_cs) %>%
    dplyr::select(geneSet, description, component, in_cs, alpha, conditional_beta) %>%
    distinct()
  
  # manipulate table
  columns <- c(
    'geneSet', 'description', 'geneSetSize', 'overlap',
    'log2OR', 'effect', 'alpha', 'pip', 'nlog10pFishersExact', 'fisherRank',
    'component'
  )
  color_columns <- which(columns %in% c('log2OR', 'effect'))
  dt <- res %>% 
    dplyr::filter(overlap > 0) %>%
    dplyr::mutate(
      log2OR = log2(oddsRatio),
      nlog10pFishersExact = -log10(pFishersExact)
    ) %>%
    dplyr::left_join(csdat) %>%
    dplyr::arrange(dplyr::desc(nlog10pFishersExact)) %>%
    dplyr::mutate(
      fisherRank = dplyr::row_number(),
      in_cs = dplyr::if_else(is.na(in_cs), FALSE, in_cs),
      effect = conditional_beta * log2(exp(1))
    ) %>%
    dplyr::filter(in_cs) %>%
    dplyr::select(columns) %>%
    dplyr::mutate(dplyr::across(!where(is.numeric) , as.factor)) %>%
    mutate(
      component = reorder(factor(component), fisherRank, FUN=min) 
      # sorts components
    ) %>%
    dplyr::arrange(component) %>%
    dplyr::mutate_if(is.numeric, funs(as.character(signif(., 3))))

  # display table
  dt %>%
    pack_group %>%
    kableExtra::column_spec(
      color_columns, color=ifelse(dt$effect > 0, 'green', 'red')) %>%
    kableExtra::kable_styling()
}

static_table(fit, ora)
results <- res
experiments <- names(results)

safe_static_table <- purrr::safely(
  gseasusie::static_table,
  otherwise = 'nothing to report')

for(this_experiment in experiments){
  sub_res <- results[[this_experiment]]
  volcano <- gseasusie::enrichment_volcano(fit=sub_res$fit, ora=sub_res$ora)
  results[[this_experiment]]$volcano <- volcano
  
  table <- safe_static_table(sub_res$fit, sub_res$ora)$result
  results[[this_experiment]]$table <- table
}
cat('\n')
cat('##', 'Results')

Results

for(this_experiment in experiments){
  cat('\n')
  cat('###', this_experiment)

  #sub_res <- results[[this_experiment]]
  #volcano <- gseasusie::enrichment_volcano(fit=sub_res$fit, ora=sub_res$ora)
  print(results[[this_experiment]]$volcano)
  
  cat("\n\n")
  #table <- safe_static_table(sub_res$fit, sub_res$ora)$result
  print(results[[this_experiment]]$table)
}

CTS

Version Author Date
ef048c4 karltayeb 2022-07-14

[1] “nothing to report”

IL1B

Version Author Date
ef048c4 karltayeb 2022-07-14
geneSet description geneSetSize overlap log2OR effect alpha pip nlog10pFishersExact fisherRank
L1
GO:0006952 defense response 710 317 1.22 0.94 1 1 24.8 1
L4
GO:0071944 cell periphery 2460 862 0.729 0.468 0.654 0.654 22.8 2
GO:0005886 plasma membrane 2400 840 0.726 0.465 0.332 0.332 22.3 5
L2
GO:0005634 nucleus 4890 1100 -0.647 -0.527 1 1 22.6 3
L3
GO:0031012 extracellular matrix 280 147 1.63 1.17 0.999 0.999 19.2 18
L5
GO:0009888 tissue development 1110 421 0.813 0.615 0.995 0.995 16.1 33
knitr::knit_exit()